Probing into regional O3 and particulate matter pollution in the United States: 2. An examination of formation mechanisms through a process analysis technique and sensitivity study
نویسندگان
چکیده
[1] Following a comprehensive model evaluation in part 1, this part 2 paper describes results from 1 year process analysis and a number of sensitivity simulations using the Community Multiscale Air Quality (CMAQ) modeling system aimed to understand the formation mechanisms of O3 and PM2.5, their impacts on global environment, and implications for pollution control policies. Process analyses show that the most influential processes for O3 in the planetary boundary layer (PBL) are vertical and horizontal transport, gas-phase chemistry, and dry deposition and those for PM2.5 are primary PM emissions, horizontal transport, PM processes, and cloud processes. Exports of O3 and Ox from the U.S. PBL to free troposphere occur primarily in summer and at a rate of 0.16 and 0.65 Gmoles day , respectively. In contrast, export of PM2.5 is found to occur during all seasons and at rates of 25.68–34.18 Ggrams day , indicating a need to monitor and control PM2.5 throughout the year. Among nine photochemical indicators examined, the most robust include PH2O2/PHNO3, HCHO/NOy, and HCHO/NOz in winter and summer, H2O2/(O3 + NO2) in winter, and NOy in summer. They indicate a VOC-limited O3 chemistry in most areas in winter, but a NOx-limited O3 chemistry in most areas except for major cities in April–November, providing a rationale for nationwide NOx emission control and integrated control of NOx and VOCs emissions for large cities during high O3 seasons (May–September). For sensitivity of PM2.5 to its precursors, the adjusted gas ratio provides a more robust indicator than that without adjustment, especially for areas with insufficient sulfate neutralization in winter. NH4NO3 can be formed in most of the domain. Integrated control of emissions of PM precursors such as SO2, NOx, and NH3 are necessary for PM2.5 attainment. Among four types of VOCs examined, O3 formation is primarily affected by isoprene and low molecular weight anthropogenic VOCs, and PM2.5 formation is affected largely by terpenes and isoprene. Under future emission scenarios, surface O3 may increase in summer; surface PM2.5 may increase or decrease. With 0.71 C increase in future surface temperatures in summer, surface O3 may increase in most of the domain and surface PM2.5 may decrease in the eastern U.S. but increase in the western U.S. Citation: Zhang, Y., X.-Y. Wen, K. Wang, K. Vijayaraghavan, and M. Z. Jacobson (2009), Probing into regional O3 and particulate matter pollution in the United States: 2. An examination of formation mechanisms through a process analysis technique and sensitivity study, J. Geophys. Res., 114, D22305, doi:10.1029/2009JD011900.
منابع مشابه
Principle of Prohibition of Harmful Use of Land and Dealing with Environmental Damage of Fine Dust in International Law with Emphasis on the Moral Responsibility of Countries
Background: Dust is one of the most important forms of air pollution. Pursuant to Article 21 of the declaration on the principle of non-harmful use of land, states are responsible, in accordance with the charter of the United Nations and the principles of international law, for arranging for activities within their competence or oversight to cause harm to the environment of other countries or r...
متن کاملEstimating the impact of the 2004 Alaskan forest fires on episodic particulate matter pollution over the eastern United States through assimilation of satellite-derived aerosol optical depths in a regional air quality model
[1] During the summer of 2004, extensive wildfires burned in Alaska and western Canada; the fires were the largest on record for Alaska. Smoke from these fires was observed over the continental United States in satellite images, and a variety of chemical tracers associated with the fires were sampled by aircrafts deployed during the International Consortium for Atmospheric Research on Transport...
متن کاملArtificial neural network forecast application for fine particulate matter concentration using meteorological data
Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...
متن کاملThe Evaluation of Tropospheric Ozone Formation in the Downwind of the South Pars Industrial Zone
Hydrocarbon Processing Industries (HPIs) emit large amounts of highly reactive hydrocarbons and Nitrogen Oxides to the atmosphere. Such simultaneous emissions of ozone precursors result in rapid and high yields ozone (O3) formation downwind. The climate of the Middle East has been shown to be favorable for O3 formation in summer. There are also vast activities in processing oil and gas in this ...
متن کاملSpatiotemporal trend of ambient air particulate matter with aerodynamic diameter less than 2.5 and 10 μm and ozone in Tabriz city, Iran, during 2006–2017
Background and Objective: This study was conducted to investigate the long-term temporal trends and spatial variations of ambient PM10, PM2.5, O3, concentrations in Tabriz city during the years 2006-2017. Materials and Methods: Real-time hourly concentrations of PM10, PM2.5, O3 measured at nine air quality monitoring stations (AQMSs) were obtained from the Tabriz Department of Environment (TDo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009